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We present numerical studies of femtosecond time-resolved probes of coupled wave packet dynamics in
model polyatomic systems. Of specific interest is the possibility of using the structure and symmetry of the
final states accessed by the probe field to discern vibrational energy flow. Simple wave packets can often
exhibit classical localization, thus facilitating a mechanistic, trajectory-like picture of the quantum dynamics.
This feature, however, does not necessarily survive in complex multidimensional problems due to differing
quantum mechanical dephasing rates in different degrees of freedom. To recover a classical-like picture of
energy flow between coupled vibrational modes, we introduce a final-state-resolved measure of wave packet
dynamics, a low-frequency band-pass filter of the signal, which is specifically sensitive to intermode energy
flow.

1. Introduction

The excited states of polyatomic molecules typically exhibit
complex intramolecular and dissociation dynamics. Vibrational
mode coupling leads to energy flow (intramolecular vibrational
energy redistribution, IVR), while the nonadiabatic coupling of
electronic and vibrational degrees of freedom leads to both
charge and energy flow. One of the important goals of molecular
dynamics is the elucidation of these couplings in chemical
processes. Femtosecond pump-probe studies of molecular
dynamics1,2 utilize the broad bandwidth of femtosecond lasers
to coherently excite an energetically broad superposition of
eigenstatessa wave packet. Wave packets of simple systems
often exhibit classical localization and therefore are useful for
developing a classical, trajectory-like picture of the quantum
dynamics. The question we address here is to what extent wave
packets can be used to achieve the same goal for more complex
dynamics in coupled polyatomic systems.

To pursue this question, we begin with a consideration of
how these dynamics are observed. The probe step in a pump-
probe wave packet measurement can be viewed as projecting
the wave packet at a well-defined series of times onto a given
final state or a set of final states. It is the interference between
transitions to this same final state that leads to modulations in
the pump-probe signal as a function of time. The final state
populations, measured incoherently, are related to the overlap
between the evolving wave packet and the stationary eigen-
functions of the final electronic state. A major role is played
by the nature of the final state. A properly designed probe should
serve to project out different components of the wave packet
or focus on different time scales in its evolution. To this end,
we have emphasized the importance of developing differential,
that is, final-state-resolved measurements of pump-probe
signals.3,4 For instance, we have shown that the cation electronic
state-resolved photoelectron spectrum can be used to disentangle

couple electronic-vibrational motions in both bound state and
photodissociation dynamics.5,6 Currently employed detection
techniques range from completely integrated to multiply dif-
ferential measurements. Techniques such as dispersed fluores-
cence,1 energy resolved photoionization,3,5-7 angle-resolved
photoionization,4,8 and translational energy spectroscopy9,10are
differential, while total fluorescence1,11 and total ion mass
spectrometry1,12 are integral detection techniques.

One of the simplest examples of energy flow in an excited
molecule is that of a Fermi resonance, for instance, between a
stretch and a bend. We imagine a femtosecond pulse creating a
zeroth order state which is initially “stretching”. Through a
Fermi resonance, energy will flow into the bending degree of
freedom. Can wave packet measurements extract a classical-
like picture of the flow of energy between these coupled degrees
of freedom? By using differential detection techniques, we might
hope to do so. For example, using photoelectron spectroscopy3,

we might consider employing the vibrational structure of the
ion as a template for decomposing the dynamics. The stretching
states of the ion would typically best overlap with the stretching
components of the wave packet. Similarly, the bending states
of the ion would overlap well with the bending components of
the wave packet. By monitoring final state populations in the
stretch and bend ion states as a function of time, one might
expect to observe, in a classical sense, the flow of energy
between these degrees of freedom.

The above picture, however, neglects the quantum mechanical
dephasing, which obscures the classical dynamics as time
progresses. Dephasing in wave packets of isolated systems is
due to anharmonicities (unequal level spacings) which lead to
a spreading of the wave packet. At short times,t ≈ 2π/ωvib,
discrete wave packets typically follow the expectations of
classical intuition, undergoing periodic vibrational motion at the
fundamental frequencyωvib. At times approachingt ≈ Trev/∆V2,
whereTrev is the full revival time13 and∆V is the width of the
wave packet, purely quantum mechanical dephasing, revivals,
and fractional revivals spoil the classical picture and, in the
multidimensional case, entangle energy transfer effects with the
effects of anharmonicity. This implies that in multidimensional
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systems, dephasing in one coordinate can reduce overall signal
levels and thus “hide” the dynamics occurring in other degrees
of freedom. The simple-minded idea of selecting the final state
to disentangle vibrational modes and thus observe classical-
like intermode energy flow will likely fail.

Our goal in the present work is to introduce a new observable
that is capable of disentangling the signature of energy flow
between vibrational modes from the effects of anharmonicity,
thus restoring a classical-like picture of the former motion. The
proposed observable is based on a low-frequency band-pass filter
of the time dependent, final-state-resolved signal which projects
out the high-frequency modes, in effect following the motion
of an “artificial” wave packet composed solely of the modes
that carry the information sought. Our discussion applies to all
differential detection techniques which allow final state resolu-
tion of the time domain signal.

The possibility of constructing a time-domain observable
capable of focusing on the motion of interest is suggested by
recent work14,15 that illustrated the ability of time-resolved
photoionization asymmetry parameters to map rotation-vibra-
tion coupling effects. The time-resolved photoionization dif-
ferential cross section can be cast in the form16

where∆t is the pump-probe time delay andθk is the polar
angle between the photoelectron ejection vector and the
polarization vector, assumed to be common to the pump and
probe fields. While the integrated cross section,σtot(∆t) is
dominated by the high-frequency vibrations, as any integrated
signal in time-domain chemistry, the asymmetry parameters,
âj(∆t) respond to the slow rotations,14,15 describing, in the
classical limit, the rotational motion of the molecular axis with
respect to an axis fixed in space. The effect of rotation-vibration
coupling is then shown to produce a beat pattern inâj(∆t), whose
envelop provides a direct measure of the coupling strength.14,15

Thus, the measurement of the asymmetry parameters is analo-
gous to applying a band-pass filter to the complex time-domain
signal, extracting a wave packet in the slowly evolving degree
of freedomsin this example, the rotation-vibration coupling.
One may therefore hope that the ability of (properly resolved)
time-domain techniques to focus on a time scale of interest is
more general.

We note that low-frequency band-pass filtering of the signal
of a femtosecond pump-probe experiment is not equivalent to
carrying out a reduced bandwidth (e.g. picosecond) pump-probe
experiment. In our observable, one considers a wave packet
constructed from the small level spacings in the problem but,
importantly, which are spread over the large bandwidth of a
femtosecond laser pulse.

The utility of the new observable is illustrated by application
to the wave packet dynamics corresponding to a model
Hamiltonian of coupled anharmonic oscillators. We use a simple
yet general model of intramolecular coupling which allows wide
variation of the coupling parameters and hence representation
of a variety of chemical system types. The next section briefly
reviews the theory4 and defines our model. Section III presents
and discusses the results and the final section concludes with
an outlook for future work.

II. Theory

We consider a generic short-pulse pump-probe scenario. The
system, initially prepared in a single eigenstate of the ground

HamiltonianHg, is projected by a short pulseεbpu(t) onto an
excited manifoldHe. A second, time-delayed pulseεbpr(t) probes
the evolving wave packet by excitation to a single final state.
Several simplifying assumptions are introduced at the outset.
The laser fields are assumed to be perturbative, angular
momentum is neglected, and details of the bound-free dynamics
are omitted. In reality, strong field effects, including the
population of a ground-state wave packet17 and the Stark shift
or distortion of the potential energy, are expected to play a
nontrivial role in most short-pulse gas-phase experiments, and
their inclusion in the formalism may modify the dynamics. Our
qualitative conclusions, however, would not be altered in the
presence of nonperturbative fields. The neglect of angular
momentum is not even qualitatively valid for cases in which
the laser field can induce rotational excitation.18 Nevertheless,
as discussed in ref 18, field-induced rotational excitation is
significant when the pulse duration exceeds the inverse Rabi
coupling. Often it is possible to design experiments where it
plays a secondary role. Initial rotational temperature and the
exchange of a single quantum of angular momentum between
the system and the field upon excitation modify the details of
the wave packet evolution but not its qualitative features.

The complete Hamiltonian is thus

whereH0 is the field-free Hamiltonian,µb is the transition dipole
operator

ε̂i is a unit vector along the polarization direction,ωi is the
central frequency, andfi(t) is a smooth envelope. In the case of
a Gaussian pulse

The pump pulse,εbpu(t) couples the initially prepared state with
the excited state to be studied. The probe pulse,εbpr(t) projects
the wave packet onto an ionization or dissociation continuum.

After the pump pulse, at timest > tpu + 2τpu, the wave packet
is written in terms of the discrete stationary eigenstates of the
molecular Hamiltonian as

where|êVê〉 ) |ê〉|Vê〉, ê denotes an electronic index (g standing
for ground and e for excited state),Vê is the vibrational quantum
number, andCê

Vê(t) is the time-dependent coefficient, deter-
mined by the excitation process and the matrix elements of the
dipole transition operator between|êVê〉 and the initial state.
Atomic units are used in eq 2 and throughout this paper. In
general,Cê

Vê(t) is obtained by substituting eq 2 in the time-
dependent Schro¨dinger equation and using the orthogonality of
|êVê〉 to cast the problem in the form of a set of coupled
differential equations.4 In the present study,Cê

Vê(t) is ap-
proximated by its first-order perturbation limit

where we invoked the rotating wave approximation,Vgi is the

σ(∆t,θk) )
σtot(∆t)

4π
[1 + â2(∆t)P2(cosθk) +

â4(∆t)P4(cosθk)]
H ) H0 - µb‚εb(t) εb(t) ) εbpu(t) + εbpr(t) (1a)

εbi(t) ) ε̂ifi(t)e
-iωit + c.c. i ) pu, pr (1b)

fi(t) ) 1
2

εi exp[-(t - ti)
2/τi

2]. (1c)

|Φ(t)〉 ) ∑
ê)g,e

∑
Vê

Cê
Vê(t)|êVê〉 exp(-iEê

Vêt) (2)

Ce
Ve(t) ≈ x2π

i
〈eVe|µb‚ε̂pu|gVg〉ε̃pu(Ee

Ve - Ee
Vg) ) Ce

Ve

Ce
Vg(t) ≈ δVg,Vgi

(3)
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initial vibrational quantum number andε̃pu(ω) is the Fourier
transform of the pump pulse. In the case of a Gaussian envelope

After the probe pulse, at timest > tpr + 2τpr, the wave packet
is written as a superposition of discrete and continuum stationary
eigenstates

where êc and Vc denote, respectively, bound electronic and
vibrational indices of the final state andε is the continuum
energy. In the specific case of photoelectron detection,êc and
Vc are the electronic and vibrational indices of final state,ε is
the photoelectron energy, and|εêcVc〉 is a product of a nuclear
core state by an electronic eigenstate describing the ionized
electron and the electronic wave function of the core.

The final-state-resolved signal, integrated over the range of
continuum energies determined by the effective bandwidths of
the laser pulses, is given as4,16

where we substituted eq 5 in the time-dependent Schro¨dinger
equation, approximated the probe field by its rotating wave
Golden rule limit and used eq 3. In eq 6, the dependence of the
signal on the pump-probe time-delay,∆t ) tpr - tpu, is implicit
in the ε̃, eq 4. In principle, the energy integration should be
done numerically. In most cases, however, variation of the
bound-free dipole elements in eq 6 with energy is negligible as
compared to the rapidly oscillating term ofε̃ [see eq 4]. This
holds true except in the vicinity of resonances. Since in practice
one would avoid the vicinity of resonances (where the probe
dynamics obscures the wave packet information sought), neglect
of the energy dependence of the〈εêcVc|µb‚ε̂pr|eVe〉 within the
(relatively narrow) energy range spanned by the pulse is valid.

Within this approximation, energy integration can be done
analytically4 obtaining

where, in deriving the first equality, we substituted the Gaussian
envelope [eq 4] in eq 6 and, in deriving the second equality,
we defined real arithmetic amplitudesf̃i(ω) through

and used eq 3. We denoted byΦVe,V′e the relative phase of the
two bound-free transition dipole elements.

The molecular Hamiltonian,H0 is eq 1a, is constructed to
provide the simplest possible model that is sufficiently general
and flexible to represent a range of chemical systems of
interest: a coupled two-dimensional Morse oscillator where the
parameters of one oscillator depend on the coordinate of the
other. The excited potential energy is thus a function of two
coordinates (Qa,Qb)

where

and

The nature of the intermode coupling and its magnitude are
determined by theA constants of eqs 8b-8d, which serve as
variable parameters in the model. TheB-constants are fixed to
ensure smooth behavior of the potential energy curves.

Figure 1. Example of the excited-state potential energy surfaces used
in the calculations of Figures 2-7. The frequencies areωa ) 200 cm-1

and ωb ) 350 cm-1; anharmonicity is 13 cm-1 in both modes, and
mode coupling is introduced through dependence of the equilibrium
distance in mode b onQa (see eq 8c). The initial and final potential
energy surfaces (not shown) are both 2D harmonic functions, as
discussed in the text.

ε̃i(ω) ) εiτi8
-1/2 exp[-i(ωi - ω)ti - τi

2(ωi - ω)2/4] (4)

|Ψ(t)〉 ) |Φ(t)〉 + ∫ dε ∑
êcVc

Cêc

Vc(ε,t)|εêcVc〉e
-i(Eêc
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dt fi(t)e
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Ve(Qa,Qb) ) Da(exp{-âa(Qa - Qa
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+ Db(Qa)(exp{-âb(Qa)[Qb - Qb
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The choice of fundamental frequencies matters little; rather,
the ratio of the vibrational level spacing to the pump bandwidth
is relevant. Similarly, it is the ratio of the anharmonicy to the
mode coupling, rather than the anharmonicity itself, that
determines the dynamics. In the calculations below, we choose
fundamental frequencies ofωa ) 200 cm-1 andωb ) 350 cm-1

with an anharmonicity of 13 cm-1 and vary the coupling strength
in a wide range in order to test the generality of the observable
introduced. A contour plot of an excited potential energy surface
with parameters corresponding to one of the calculations
described in the next section is shown in Figure 1. The pulse
duration is taken to be 20 fs.

Both the initial and the final eigenstates are approximated as
separable harmonic functions,Vi(f) ) Vi(f),0 + 1/2 ∑v)a,b ωv

2(Qv

- Qv
eq)2. In all examples studied, the system is initially in the

ground vibrational level, and the final state geometry is identical
to that of the initial state. These idealizations are clearly
unnecessary but appropriate for the present model, within which
the initial and final states have no active role but serve simply
to define the initial conditions and to provide a “template” for
detection of the wave packet evolution. The vibrational frequen-
cies of the initial and final potential energy surfaces do not play
a crucial role and are taken for simplicity to equal those of the
surface. By contrast, the equilibrium displacement between the
initial and probed surfaces is a significant parameter even in a
qualitative exposition, since it determines the sense and
magnitude of the initial wave packet momentum. This equilib-
rium displacement is thus a variable parameter in the model
and its role is briefly examined in the next section.

III. Results and Discussion

It is our purpose to investigate the utility of the vibrational
structure of the final state in projecting out various aspects of
multidimensional wave packet evolution. We expect the nature
of the final state (e.g., vibrational and/or electronic symmetry)
to have a large effect on the form of time-resolved signals. The
set of such projections will hopefully provide new views of
complex wave packet evolution. We begin with a brief review
of two-dimensional wave packet dynamics on uncoupled
excited-state potential energy surfaces. Our aim in reviewing
the trivial case of uncoupled modes is to illustrate the effects
of the geometry of the initial and vibrational symmetry of final
state on the signals. Considering next vibrational mode coupling,
we investigate the ability of the final vibrational state to provide
a quantitative measure of vibrational energy flow.

Figure 2 illustrates the role played by the geometry of the
initial state (which determines the sense and magnitude of the
initial momentum of the wave packet). Panels a-c show
normalized time-resolved signals for projection onto the vibra-
tionless (0,0) final state for different equilibrium displacements
between the initial and probed potential energy surfaces. In panel
a, the equilibria are displaced inQa; in panel b, they are
displaced inQb and in panel c in both coordinates. It should be
noted that a (0,0) final state is equally sensitive to bothQa and
Qb motions. Figure 2a shows a wave packet signal which
resembles the one-dimensional revival structure of an anhar-
monic oscillator in mode a. Similarly, Figure 2b shows a wave
packet signal which is reminiscent of one-dimensional revival
structure of an anharmonic oscillator in mode b. SinceQa and
Qb are uncoupled, the energy initially deposited in a given mode

Figure 2. Normalized signals and spectrograms, eq 10, from the (0,0) final vibrational state for uncoupled 2D excited-state wave packets. (a)
Wave packet motion along the coordinate only. (b) Motion along the coordinate only. (c) Motion along both and coordinates simultaneously. In all
spectrograms plotted in this paper, the abscissa ranges from 0 to 840 cm-1, marked in steps of 200 cm-1, the ordinate ranges from-1 to 41 ps,
marked in steps of 10 ps, and the spectral power in mode a is shown in green, in mode b in red, and in combination modes in black.
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remains in that degree of freedom giving rise to quasi-one-
dimensional motion. Figure 2c is evidently more complex.

The logarithmic spectrogram, ln[S(ω, τ)], of each time-
resolved signal is shown to its right. The spectrogram is defined
as19,20

whereg(t) ) e-t2/t02 and t0 is taken to be 1 ps in the examples
considered here. The spectrogram reveals the phase relationships
between different frequencies and, in simple cases, the revival
and fractional revival structure of the wave packet evolution.19-21

To facilitate comparison, we plotted all logarithmic spectrograms
in this work on the same scale: the transforms are performed
on normalized signals, and the results are plotted with the same
contour spacing. Throughout the paper, the signals associated
with Qa-motion (i.e.ωa, 2ωa, 3ωa) are shown in green, whereas
those associated withQb-motion are shown in red. Signals
associated with combination modes (eg. 2ωa-ωb) are shown
in black.

Panels a and b of Figure 2 show canonical one-dimensional
wave packet behavior with revival structure in modes a (green)
and b (red), respectively. Since the vibrations are uncoupled
and the initial excitation is along one coordinate only in these
cases, the excitation remains isolated, and each wave packet
behaves as an essentially one-dimensional entity. In Figure 2c,
by contrast, the wave packet propagates along both coordinates.
It can be seen that, although no vibrational coupling has been
introduced, the behavior is qualitatively different from one-
dimensional wave packets, with slight shifts in the frequencies
due to smaller anharmonicities in each oscillator at this level
of excitation. Aside from the usual revival structures for each
oscillator, we also observe the various sum and difference
frequencies. It can be seen that at about 22 ps, the overall wave
packet revives, and all the frequencies are observed as at∆t )
0. An essential characteristic of multidimensional time-resolved
wave packet signals is that even when the modes are uncoupled,
the degree of wave packet dephasing in one coordinate obscures
the ability to observe wave packet motion in the others. As
discussed below, this fundamental characteristic implies that the
spectrogram, like the bare time-resolved signal, would fail in

general to clearly reflect the flow of energy between coupled
degrees of freedom in a classical sense.

Figure 3 shows the effect of the vibrational symmetry of the
final state on the time-resolved signals for the same wave packet
as that in Figure 2c (i.e., a wave packet propagating along both
coordinates). In the Figure 2c, the final vibrational state is (0,0),
and the wave packet evolves along both (uncoupled) modes. In
Figure 3, we show the time-resolved signals for that wave packet
from the (4,0) and (0,4) final vibrational state. The vibrational
symmetry of the final state has a large effect on the signals. A
(4,0) vibrational state is extended along theQa direction and
has four nodes. Likewise, a (0,4) vibrational state is extended
along theQb direction and has four nodes. The top panel of
Figure 3 illustrates the effect of the nodal structure of the final
state on the time-resolved signal and spectrogram. The funda-
mental revival in mode a along the 185 cm-1 line at about 20
ps is broken into three maxima since the wave packet is detected
by only three of the five lobes when it passes the Condon region.
The revival structure in mode b along the 330 cm-1 line remains
unperturbed since, in this dimension, the “window” is similar
to that of Figure 2c. By contrast, in the bottom panel of Figure
3, the revival structure along the 185 cm-1 line remains
relatively unperturbed, and it is the fundamental revival along
the 330 cm-1 line which is broken into small maxima. The
results of Figures 2 and 3 show that even in the case of an
uncoupled two-dimensional anharmonic oscillator, the time-
resolved wave packet signals and spectrograms can become
complicated to interpret. They also illustrate that the vibrational
structure and symmetry of the detection (final) state has a central
role in determining the form of the observable.

A. Mode Coupling. We next consider the more interesting
and realistic problem of vibrationally coupled modes. Anhar-
monicity leads to unequal level spacings and, therefore, dephas-
ing of the wave packet on a time scalet ≈ Trev/∆V2, whereTrev

is the full revival time13 and∆V measures the width of the wave
packet. Vibrational coupling similarly leads to unequal level
spacings and, hence, time-domain dynamics at comparable time
scales. The physical significance of these two effects is very
different: in the case of anharmonicity, it is the quantum aspect

Figure 3. Normalized signals and spectrograms for uncoupled wave packet motion along bothQa andQb coordinates simultaneously. Top panel:
signals from the (4,0) final vibrational state. Bottom panel: signals from the (0,4) vibrational state. The differences between those and Figure 2c
are due only to the final state since the wave packet evolution is identical in these three cases.

S(ω,τ) ) ∫0

∞
s(t)g(t - τ)eiωt dt (10)
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of the evolution which leads to dephasing; in the case of
vibrational coupling, it is the flow of energy between degrees
of freedom.

The model described in section II allows coupling to be
systematically introduced in several ways, corresponding to
different energy transfer mechanisms. Here we limit attention
to coupling of the equilibrium configuration in one mode to
motion in the other,Aâ ) AD ) 0, AQeq * 0 in eq 8. To allow
physically meaningful interpretation of the results, it is conve-
nient to measure the magnitude of the coupling in terms of the
splitting it induces in the energy eigenvalues of the stationary
states comprising the wave packet. Below, we adjust the
coupling parameter to produce an average energy splitting
ranging from 3 to 21 cm-1. The anharmonicity in both modes
is kept constant and equal to that in Figures 2 and 3,
corresponding to the middle of the coupling strength range (ca.
13 cm-1). Two limiting cases are noted: (1) much greater
anharmonicity than mode coupling and (2) much smaller
anharmonicity than coupling. In the former, the wave packet
dephases before energy transfer can occur, obscuring a classical
picture of energy transfer. In the latter, energy transfer can occur
in the quasiclassical stage of the evolution, with dephasing
setting in on longer time scales. The potential energy surface
of Figure 1 corresponds to an intermediate case, with coupling
strength of the order of the anharmonicity.

The time-resolved signals and spectrograms corresponding
to the potential energy surface of Figure 1 are given in Figure
4. To focus on the effects of mode coupling, the initial momen-
tum is set alongQa only, as in Figure 2a. One might expect
that a comparison of the signals for final states (0,n) and (n,0)
would be sensitive to energy flow betweenQa and Qb. The
bottom and middle panels of Figure 4 show the time-resolved
signals for the (0,4) and (4,0) final vibrational states, respec-

tively. In the top panel, we show the time-resolved signal for
projection onto the (0,0) final state. A delay of about 1.2 ps
between the maxima of signals shows that motion alongQb,
induced solely by the coupling, appears only after a time-delays
a characteristic time scale of the energy transfer. This notion is
made more precise below. The spectrograms derived from the
time-resolved signals are shown to the right. The coupling
clearly spoils the simple revival structure seen in Figure 2, the
revival of mode b, although present, is not observed at all.
Neither the spectrogram corresponding to the (0,4) final state
nor that corresponding to (4,0) convey a clear physical picture
of transfer of excitation. The simple classical notion of spectral
power varying between one oscillator and the other fails
completely.

We have studied the form of the time-domain signals as a
function of the coupling strength, ranging from much less to
much greater than the anharmonicity (vide infra). We have
observed that the loss of revival structure occurs even with weak
coupling. As the coupling increases, the signals becomes
increasingly irregular. The implicit flow of energy between the
degrees of freedom, however, is not obvious in either the time-
resolved spectra or the spectrograms. In general no simple
transfer of intensity from the fundamental frequency of mode a
to that of mode b is evident from these observables. The main
reason for this is that spreading of the wave packet typically
takes place on a time scale comparable to that of intermode
flow of energy. It is this spreading that precludes a simple
classical picture of the motion, analogous to that of the short
time vibrations of wave packets.

To develop a general method for observing the energy transfer
between coupled modes, we introduce here a technique based
on band-pass filtering of the multimode wave packet, designed
to focus on the low-frequency modes by filtering out the high-

Figure 4. Normalized signals and spectrograms for a mode-coupled 2D wave packet, from the (0,0) final state (top panel), the (4,0) final state
(middle panel), and the (0,4) state (bottom panel). Initial motion is along the mode only. The vibrational coupling leads to motion in the coordinate
and destroys the simple revival structures seen in Figures 2 and 3.
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frequency components. Since the time scale of the flow of
energy between modes is much longer than the fundamental
periods themselves (otherwise the fundamental periods are not
defined), a low-frequency band-pass of the vibrationally resolved
signal could serve as a general and direct measure of the former
motion. Band-pass filtering amounts to monitoring a wave
packet of low-frequency components but spread over a large
bandwidth, whose time-evolution traces the slow energy flow
alone. Figure 5 shows a low frequency (here 5-15 cm-1) band-
pass

of the spectra shown in Figure 4. For comparison, we show
B(τ) also for the (0,0) vibrational state. We note that the (4,0)
and (0,0) signals are in phase, whereas the (4,0) and (0,4) signals
are out of phase. Figure 5 clearly reflects the flow of energy
betweenQa and Qb, seen to be on a time scale of 1.2 ps, as
expected for the coupling strength (ca. 13 cm-1) used in this
example. Initially, the wave packet energy is localized in the
Qa degree of freedom, as prepared. As the evolution proceeds,
the coupling transfers the energy to theQb degree of freedom,
and the energy in theQa mode correspondingly decreases; hence,
the two band-pass signals are out of phase. In this simple two-
dimensional Fermi resonance case, the energy, of course, flows
back to modeQa on the same time scale, producing a periodic
structure whose period measures directly the coupling strength.
The slower envelope modulations, leading to dephasing at longer
times, are due to the effects of anharmonicity, now clearly
distinguishable. We note that the results are insensitive to the
choice ofω+,- in eq 11 within reasonable limits; other band-
pass ranges (e.g. 20-30 cm-1) give similar results.

Figure 5 suggests that the low-frequency band-pass filter
responds directly to the time scale of intramolecular energy flow
and recovers a classical picture of this flow. To quantify this
notion, we next examine in detail the dependence of the
observable on the coupling strength, in particular, its magnitude
relative to the anharmonicity.

Figures 6 and 7 show, respectively, the cases of weak and
strong mode coupling, where “weak” (“strong”) is meant with
respect to the anharmonicity, equivalently, with respect to the
coupling strength of Figure 5. As the coupling strength increases,

the magnitude of the (4,0) signal decreases with a corresponding
increase in the magnitude of the (0,4) signal. In the case of
weak coupling (Figure 6), the canonical revival structure
dominates the form of the signals, as in Figures 2 and 3, and
the signal is modulated on a much longer time scale than that
of Figure 5. As the coupling strength increases (Figure 7), the
modulation frequency increases, measuring quantitatively the
expected faster time scale of the intermode energy flow. For
the case of zero coupling (not shown), the band-pass signals
show only the effects of anharmonicity and the (0,4) and (4,0)
signals are essentially the same. It is noted that the period of
undulations in Figures 5-7 corresponds to the time scales
expected from the average splitting of the energy eigenvalues,
∆E ) 3.4, 13, and 21 cm-1 in the examples shown in Figure 5,
6, and 7, respectively. Comparison of the upper and middle
curves of Figure 6 (or 7) illustrates again that the (4,0) and (0,4)
band-pass signals are out of phase, reflecting initial motion
exclusively along theQa coordinate which is subsequently
periodically transferred between the two modes.

The band-pass filter introduced above is a sensitive measure
of the time scales of energy flow between degrees of freedom.

Figure 5. Low-frequency band-pass filter [eq 11] of the signals of
Figure 4. The band-pass signal illustrates the flow of energy from mode
a to mode b on a 1.2 ps time scale, corresponding to the mode coupling
strength of 13 cm-1 employed.

B(τ) ) ∫ω-

ω+S(ω, τ) dω (11)

Figure 6. Band-pass signal for the same anharmonicity but weaker
mode coupling (3.4 cm-1) than that of Figure 5. The modulation period
is significantly increased, as expected for weaker coupling, illustrating
the sensitivity of the band-pass signals to the vibrational coupling
strength.

Figure 7. Band-pass signal for the same anharmonicity but stronger
mode coupling (21 cm-1) than that of Figure 5. The modulation period
is significantly decreased, as expected for stronger coupling, affirming
the utility of the band-pass as a measure of mode coupling time scales.
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It might be thought that this observable is equivalent to the
pump-probe signal of a long-pulse (picosecond) experiment.
This is not the case. A picosecond pump pulse coherently excites
a few narrowly spaced energy levels and a picosecond probe
pulse projects these onto a given final state. By contrast, a
femtosecond pump pulse prepares a broad energy range of
levels. The femtosecond probe pulse has sufficient bandwidth
to project all of these onto a given final state. The band-pass
filter selects from this superposition of signals all pairs of small
level spacingsswhich are distributed over a large energy ranges
that fall within the frequency band-pass. The resultant band-
pass signal obtains from a wave packet in the degree of freedom
corresponding to the small level spacings, reflecting the flow
of energy between modes.

In an experimental realization, there will be, of course,
amplitude noise in the low-frequency part of the pump-probe
spectrum due to drifts in experimental conditions. Undoubtedly,
this will hamper the ability of band-pass analysis to clearly
extract intermode energy flow effects. With many probe schemes
(for instance, photoelectron spectroscopies3,5-7), the dispersed
signals are collected in a multiplex fashion. That is to say, in
the context presented here, that the (0,0), (0,4) and (4,0) signals
are collected simultaneously. Since drifts in experimental
conditions affect each of these signals in the same way, it should
be possible to project out this “common mode” noise and, hence,
extract the desired information from a comparison of the signals
corresponding to different vibrational final states.

IV. Conclusion

We proposed a means of using time-domain measurements
to study intermode energy flow in multidimensional systems,
thus providing a time-dependent view of vibrational coupling
mechanisms in polyatomic molecules. The scheme was exem-
plified through a simple numerical model, intended to describe
the essential features of different chemical systems by variation
of the coupling nature and strength.

One key element in the method is the use of the natural
structure and symmetry of the final state accessed by the probe
pulse to project out given components of a time-evolving wave
packet. For the example of photoelectron detection, for instance,
the feasibility of observing energy exchange between coupled
vibrational modes may be studied by projecting the wave packet
onto ion states of differing vibrational character.

The problem of following energy exchange between coupled
vibrational modes in quantum mechanical systems is compli-
cated, primarily due to wave packet dephasing taking place on
shorter or comparable time scales. We found that the conven-
tional observables of time-domain spectroscopy may not be
capable of providing a transparent picture of energy flow even
in the limit of an idealized model. Our results illustrated the
need for a new measure, specifically sensitive to the time scale
of motion of interest and capable of extracting out of a complex
superposition of many components those conveying the infor-
mation sought.

Our strategy in addressing this problem is best visualized by
noting its analogy to a recently introduced method14 for
constructing a time-domain measure of rotation-vibration
couplings by extracting the moments of angle resolved signals.
For the case of energy flow between vibrational modes, we

introduced low-frequency band-pass filtering of the final-state-
resolved signal (eq 11). The band-pass effectively averages out
the fast vibrational components of the wave packet motion,
focusing on the modes relevant to the problem of interest which
are, nonetheless, spread over a large energy range. When
combined with vibrational resolution of the final state, this
observable was found to provide a clear, physical picture of
energy flow between coupled modes and a quantitative measure
of the degree of coupling. We expect that the same general
concept may find applications in other time-domain approaches
to the study of coupling mechanisms.
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